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Super connected and hyper connected arithmetic
graphs
L. Mary Jenitha1* and S. Sujitha2

Abstract
A connected graph G is said to be super connected if every minimum vertex-cut isolates a vertex of G. Moreover
a graph is said to be hyper connected if for every minimum vertex cut S, G−S has exactly two components, one
of which is an isolated vertex. In this paper, we focussed the concept in arithmetic graphs Vn and proved that, for
an arithmetic graph G = Vn ,n = Pa1

1 ×Pa2
2 × ....×Par

r where 0 < ai ≤ 2 and r > 3 is super and hyper connected
and for at least one ai ≥ 3, the graph G =Vn is only super connected. Also, it is clear that for every arithmetic
graph G =Vn, n is any integer is super and hyper edge connected.
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1. Introduction
For notation and graph theory terminalogy not given here,

we follow [2]. In [4] the connectivity number of an arithmetic
graph is studied by L. Mary Jenitha and S. Sujitha. Later
the average connectivity of the same graph is discussed by
the same authors in[5]. The super connected and hyper con-
nected definitions are from [8] and authors used the concept
for studying line graphs. In this paper we studied the con-
cepts super connected, hyper connected, super connectivity,
hyper connectivity of an arithmetic graph. All graphs in this
paper considered are simple graphs. A connected graph G is
super connected(super edge connected) if every minimum
vertex -cut (edge-cut) S of G,G−S has isolated vertices. The
cardinality of the minimum vertex cut is the super connected
number (super edge connected number) and is denoted by
κs(G)(λs(G)). A connected graph G is hyper connected
(hyper edge connected) if every minimum vertex -cut(edge-
cut) S of G,G−S has exactly two components, one of which

is an isolated vertex. The cardinality of the minimum vertex
cut is the hyper connected number (hyper edge connected
number) and is denoted by κh(G) (λh(G)). A subset S⊂V (G)
is called a super− vertex cut (super− edge cut) if G−S is
not connected and every component contains at least two
vertices . The super connectivity κsc(G) is the minimum car-
dinality over all super vertex cuts in G.In general, super vertex
-cuts (respectively super edge-cuts)in G do not always ex-
ist then the number is denoted by ∞.This concept is studied
from [3]. Through out the article we used the notation for an
arithmetic graph as G =Vn,n = Pa1

1 ×Pa2
2 × ....×Par

r . Some
authors used the notation as G =Vn ,n = Pa1

1 Pa2
2 ....Par

r for an
arithmetic graph. The following theorems are used in sequel.

Theorem 1.1. [2] For a connected graph G,κ ≤ κ
′ ≤ δ .

Theorem 1.2. [2] A vertex v of a tree G is a cut vertex of G if
and only if d(v)> 1.

Theorem 1.3. [6] For an arithmetic graph G =Vn ,n = Pa1
1 ×

Pa2
2 × ....×Par

r ,

δ (G) =

{
r, r ≥ 3
1, r = 2

Theorem 1.4. [4]For an arithmetic graph G =Vn, n =pa1
1 ×

pa2
2 where p1 and p2 are distinct primes, then κ(Vn) =

κ
′
(Vn) =

{
1 for ai = 1 and a j > 1; i, j = 1,2
2 for ai > 1; i = 1,2

Theorem 1.5. [5]For an arithmetic graph G=Vn, n =pa1
1 ×
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pa2
2 where p1 and p2 are distinct primes,a1,a2 ≥ 1then ε =

4a1a2−a1−a2, where ε is the size of the graph G.

2. Super connected and
Hyper connected Arithmetic Graphs

In this section we identified super connected and hyper con-
nected arithmetic graphs from the class of arithmetic graphs
and their corresponding numbers.

Theorem 2.1. For an arithmetic graph G =Vn,n = p1× p2×
. . .× pr is super and hyper connected and

κs(G) = κh(G) =

{
1, if r = 2
r, if r > 2

Proof. Case (i) when r = 2
In this case G is a tree with an internal vertex and two end
vertices. Let p1, p2 be the end vertices and p1× p2 be an
internal vertex of G. By theorem 1.2, no end vertex of G
is a cut vertex of G and every internal vertices of G are cut
vertices. Therefore the vertex cut S(say) contains the inter-
nal vertex p1× p2 only. Clearly the graph G− S contains
exactly two components namely the isolated vertices p1 and
p2. Therefore by definition, the graph G is hyper connected
and super connected. Hence the super connected number
κs(G) = κh(G) = |S|= 1.

Case (ii) when r = 3
In this case the arithmetic graph is G = Vn where n = p1×
p2× p3. Let the vertices of G be {p1, p2, p3, p1× p2, p1×
p3, p2× p3, p1× p2× p3}. The minimum degree δ (G) is three
and the graph has exactly four minimum degree vertices. Let
the vertices be p1, p2, p3 and p1× p2× p3. We can easily ob-
serve that N(p1) = {p1× p2, p1× p3, p1× p2× p3},N(p2) =
{p1× p2, p2× p3, p1× p2× p3},
N(p3) = {p1× p3, p2× p3, p1× p2× p3} and N(p1× p2×
p3) = {p1, p2, p3}. The removal of N(p1) or N(p2) or N(p3)
or N(p1× p2× p3) from Vn makes the graph disconnected
and hence the sets
N(p1),N(p2),N(p3),N(p1× p2× p3) are considered as the
minimum vertex cut S of G. The graph G−N(p1) contains
two components namely C1 and C2. Clearly C1 is an isolated
vertex p1and C2 is a connected graph with |V (C2)| > 1 and
|E(C2)| ≥ 1. Suppose C2 is not connected then it contradicts
the adjacency of the arithmetic graph G = Vn. Thus in this
case G is hyper connected and super connected. Hence
κs(G) = |N(P1)|or |N(P2)|or |N(P3)|or |N(P1×P2×P3)|=
3 = κh(G).

Case (iii) when r > 3
In this case the arithmetic graph is G = Vn, where n = p1×
p2 × . . .× pr. The vertex set of G is {p1, p2 . . . , pr, p1 ×
p2, p1× p3, ..., p1× pr, p2× p3, .., p1× p2× p3, . . . , p1× p2×
. . .× pr}. To prove G is super connected. By theorem 1.3,
it is easy to verify that the minimum degree of G is r and
d(p1× p2× . . .× pr) = r. Therefore the vertex p1× p2×
. . .× pr is adjacent to exactly r vertices. By the definition
of an arithmetic graph p1, p2, p3 . . . , pr are adjacent vertices

of p1× p2× . . .× pr. Hence the set S = {p1, p2, p3, . . . , pr}
form a minimum vertex cut of G. Suppose G− S has no
isolated vertices. Then G− S is a disconnected graph con-
taining connected components. Therefore the vertex p1×
p2× . . .× pr must be connected to some other vertices and
hence d(p1× p2× . . .× pr) > r which is a contradiction to
d(p1× p2× . . .× pr) = r. This implies that G is super con-
nected. Since |s|= r we have κs(G) = r. Now to prove G−S
is hyper connected. Since G has only one minimum degree
vertex p1× p2× . . .× pr and κ(G)≤ δ (G) the minimum ver-
tex cut S contains exactly r vertices namely p1, p2, p3 . . . , pr.
Therefore G−S contains an isolated vertex p1× p2× . . .× pr
and a connected component. Hence G is hyper connected and
the hyper connected number κh(G) = r.

Theorem 2.2. For an arithmetic graph G = Vn,n = pa1
1 ×

pa2
2 × . . .× par

r where ai ≤ 2 and r > 3 is super and hyper
connected.

Proof. Consider the arithmetic graph G =Vn, let us classify
that the vertices of G be prime vertices, prime power vertices,
product of prime vertices and product of prime power vertices.
Now we look into the adjacency of the vertices. Consider the
vertex v1 =Π limr

i=1 pai
i , where a′is are the maximum exponent

of pi, from the vertices of the given graph G. Clearly d(v1) =
r. Choose v2 = Π limr

i=1 pi
bi where bi < ai for at least one

i, such that the degree of v2 must be greater than v1 by at
least one. Since otherwise it contradicts the definition of an
arithmetic graph. Therefore d(v1) < d(v2), continuing the
process we observe that d(v1) < d(v2) ≤ ·· · ≤ d(pr) · · · ≤
· · · ≤ d(p1) (Here the equality holds for some of the vertices).
We can easily say that the vertex v1 is the only vertex with
minimum degree. Hence N(v1) is the minimum vertex cut, let
it be S. Clearly G−S has an isolated vertex v1. Therefore the
given graph is super connected and hyper connected. Hence
κs(G) = κh(G) = r.

Remark 2.3. If G = Vn be an arithmetic graph where n =
pa1

1 × pa2
2 ,with the order of ai is not considered then

n(S) =


1 if a1 = 1,a2 ≥ 2(or)a1,a2 > 2
2 if a1 = 2 and a2 > 2
3 if a1,a2 = 2.

where n(S) is

the number of minimum vertex cuts of G, and the order is
not considered.

Proof. The proof follows from the definition of an arithmetic
graph.

Theorem 2.4. For an arithmetic graph G =Vn, the following
holds (i)If n = pa1

1 × pa2
2 ,a1 > 2 and a2 = 2,then the number

of vertices having minimum degree is 2(a1−1) and the graph
has two minimum vertex cuts. (ii)If n = pa1

1 × pa2
2 ;a1,a2 >

2, then the number of vertices having minimum degree is
(a1−1)(a2−1) and the graph has only one minimum vertex
cut.

244



Super connected and hyper connected arithmetic graphs — 245/247

Proof. (i) Consider the arithmetic graph G =Vn, where n =
pa1

1 × pa2
2 ;a1 > 2 and a2 = 2. The vertex set V (G)= {p1, p2

1, p3
1, . . . , pa1

1 , p2, p2
2, p1×

p2, p2
1× p2, . . . , pa1

1 × p2, p1× p2
2, p2

1× p2
2, . . . , pa1

1 × p2
2}. Here

the vertices {pai
1 ; 2 ≤ ai ≤ a1} are adjacent to exactly two

vertices namely p1× p2 and p1× p2
2. Hence d(p2

1) = d(p3
1) =

· · · = d(pa1
1 ) = 2. Thus (a1− 1) vertices of G have degree

2. Also the vertices {p2
1× p2

2, p3
1× p2

2, . . . , pa1
1 × p2

2} are ad-
jacent to the vertices p1 and p2. That is N(pai

1 × p2
2) =

{p1, p2} for 2≤ ai ≤ a1. Hence d(p2
1× p2

2) = d(p3
1× p2

2) =
· · · = d(pa1

1 × p2
2) = 2. Again (a1 − 1) vertices are of de-

gree 2. Thus the total number of vertices of degree 2 are
(a1−1)+(a1−1) = 2(a1−1). Also, we can easily say that
the given arithmetic graph G has two minimum vertex cuts
{p1, p2} and {p1× p2, p1× p2

2}.
(ii) If n = pa1

1 × pa2
2 ;a1,a2 > 2. The vertex set of G is

V (G) = {p1, p2
1, p3

1, . . . , pa1
1 , p2, p2

2, p3
2, . . . , pa2

2 , p1× p2, p1×
p2

2, . . . , p1× pa2
2 , p2

1× p2, p2
1× p2

2, . . . , p2
1× pa2

2 , p2
1× p2, . . . ,

pa1
1 × p2, pa1

1 × p2
2, . . . , pa1

1 × pa2
2 } By 1.3, δ (G) = 2. Let A =

{p2
1, p3

1, . . . , pa1
1 } ; |A|= (a1−1) and B = {p2

2, p3
2, . . . , pa2

2 } ;
|B| = (a2− 1). Clearly the cartesian product of A and B is
the set A×B containing (a1−1)× (a2−1) vertices. By the
definition of an arithmetic graph, these (a1−1)×(a2−1) ver-
tices have the common neighbourhoods p1 and p2. Thus the
vertex set {p1, p2} is the only minimum vertex cut of G.

Theorem 2.5. In an arithmetic graph G =Vn,n = pa1
1 × pa2

2 ,
at least one ai ≥ 3 then κh(G) = ∞,

κs(G) =
{

1, if a1 ≥ 3 and a2 = 12, if a1 ≥ 3 and a2 ≥ 1.

Proof. Case (i)
Without loss of generality let us assume that a1 ≥ 3 and
a2 = 1. Let the vertices of G be V (G) = {p1, p2, p2

1, p3
1, p1×

p2, p2
1× p2, p3

1× p2}. Clearly p1× p2 is the only neighbour
for the vertices {p2

1, p3
1, . . . , pa1

1 }. Hence N(p2
1) = N(p3

1) =
· · · = N(pa1

1 ) = {p1× p2}. By the result 2.3, the vertex set
S = {p1× p2} is the minimum vertex cut of the given graph
G. Here G−S is a disconnected graph with at least a1 com-
ponents namely the isolated vertices {p2

1, p3
1, . . . , pa1

1 } and a
connected graph. Thus G is super connected but not hyper
connected. Since S contains only one element, the super
connected number κs(G)=1. Since the graph is not hyper
connected the hyperconnected number κh(G) = ∞.
Case (ii)
Without loss of generality let us assume that a1 ≥ 3 and a2 = 2
. Let the vertices of G be V (G) = {p1, p2, p2

1, p2
2, p3

1, p1×
p2, p1× p2

2, p2
1× p2, p3

1× p2, p2
1× p2

2, p3
1× p2

2,}. Also in 1.3,
δ (G) = 2 and by result 2.3, there exists only two minimum
vertex cuts of G. Since the vertices p2

1, p3
1, p2

2 are adjacent
only to the vertices p1× p2 and p1× p2

2, N(p2
1) = N(p3

1) =
N(p2

2) = {p1× p2, p1× p2
2}. Also the vertices p2

1× p2
2, p3

1×
p2

2 are adjacent only to p1 and p2. We have N(p2
1× p2

2, p3
1×

p2
2) = {p1, p2}. Therefore S1 = {p1× p2, p1× p2

2} and S2 =
{p1, p2} are the two minimum vertex cuts of G and the re-
moval of S1 or S2 from G makes the graph disconnected with
at least three components having two isolated vertices. Hence
the graph is super connected and the cardinality of the mini-

mum vertex cut is the super connected number κs(G)=2. But
the graph is not hyper connected so κh(G) = ∞

Case (iii)
Let n = pa1

1 × pa2
2 if both ai > 2,the vertices of G be V (G) =

{p1, p2
1, p3

1, . . . , pa1
1 , p2, p2

2, p3
2, . . . , pa2

2 , p1× p2, p1× p2
2, . . . , p1

× pa2
2 , p2

1× p2, p2
1× p2

2, . . . , p2
1× pa2

2 , p3
1× p2, p3

1× p2
2, . . . , p3

1×
pa2

2 , . . . , pa1
1 × p2, . . . , pa1

1 × pa2
2 }. By result 2.3, there exists

only one minimum vertex cut,and by theorem 1.4 let it be
S = {p1, p2} but there are more than one vertex which are
adjacent only to p1 and p2. Hence G− S is a disconnected
graph with at least two isolated vertices and a connected com-
ponent.Therefore the graph is super connected but not hyper
connected. Hence κs(G) = |S|= 2 and κh(G) = ∞

Theorem 2.6. In an arithmetic graph G=Vn,n= pa1
1 × pa2

2 ×
·· ·× par

r at least one ai ≥ 3 then G is super connected but not
hyper connected.

Proof. Consider the arithmetic graph G =Vn,n = pa1
1 × pa2

2 ×
·· · × par

r at least one ai ≥ 3. In[1],|V (G)| = [(a1 + 1)(a2 +
1) . . .(ar + 1)]− 1 and δ (G) = r . Let v1 = pa1

1 × pa2
2 ×

·· ·× par
r be the vertex of G with higher exponent ai and ar-

range a′is such that a1 ≥ a2 ≥ a3 · · · ≥ ar. Here d(v1) = r.
Let us consider the vertex v2 = pb1

1 × pb2
2 × ·· · × pbr

r ,b1 ≥
b2 ≥ b3 · · · ≥ br where b1 = a1 − 1 and bi = ai for every
i = 1,2, . . . ,r also d(v2) = r. Thus there exists atleast two
vertices of minimum degree with same neighbourhood and
the set, S = {p1, p2, . . . , pr} is the minimum vertex cut of
G. Hence the cardinality of S is the super connected num-
ber. Thus κs(G) = r. Since G−S has more than two isolated
vertices the graph is not hyper connected hence the hyper
connected number is κh(G) = ∞

Remark 2.7. In an arithmetic graph G =Vn,n = pa1
1 × pa2

2 ×
·· · × par

r ai ≤ 2 the super connected and hyper connected
number are equal to its connecivity number κ(G).
(i.e)κs(G) = κh(G) = κ(G).

Remark 2.8. In an arithmetic graph G =Vn,n = pa1
1 × pa2

2 ×
·· ·× par

r at least one ai > 2 then κs(G) = κ(G) 6= κh(G).

Theorem 2.9. Every arithmetic graph G = Vn,n = pa1
1 ×

pa2
2 ×·· ·× par

r is super and hyper edge connected.

Proof. The proof is obvious from the definition and above
results

3. Super Connectivity of an arithmetic
graph κsc(G)

The definition of a super connectivity number of a graph is
studied from [3].The authors Jun-Ming Xu, Min Lu, Meijie
Ma, Angelika Hellwig used the definition for line graphs. We
studied the concept in arithmetic graphs.
The following steps are used to find the super connectivity
number κsc(G) of an arithmetic graph G =Vn. Let G =Vn
be an arithmetic graph where n = pa1

1 × pa2
2 ×·· ·× par

r ,ai ≥ 1
and Ps

i are distinct primes . Let the vertex set of G be V (G) =
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{v1,v2,v3, . . .vn}.
step1:
Choose two vertices u and v in V (G) such that d(u)+d(v)
= min{d(vi)+d(v j)|viv j ∈ E(G), i 6= j, i, j = 1,2...r}
step2:
Take X = N(u)−{v} and Y = N(v)−{u}.
step3:
Find T and S such that T is the set of vertices which are
adjacent only to X and Y, and S = {T ∪X ∪Y}.
step4:
Observe G− S, If every component of G− S contains no
isolated vertices then S is a super vertex cut and |S| is a super
connectivity number .If not, S is not a super connectivity set
of G and the super connectivity number is ∞.

Theorem 3.1. In an arithmetic graph G =Vn,
n = pa1

1 × pa2
2 × . . .× par

r where ai = 1 for every i

then κsc(G) =

{
∞ for r ≤ 3
ai ∏ limr

j=1,i6= j(a j +1)+ r−2 for r > 3

Proof. Case (i) When r ≤ 3
Sub case (i) If r = 2 then the arithmetic graph is a tree with
three vertices so the internal vertex is a cut vertex, say v and
the graph G− v has two isolated vertices. Hence G has no
super vertex cut. Therefore by definition κsc(G) = ∞.
Sub case (ii)If r = 3 then, it is clear that G contains exactly
three minimum vertex cuts namely S1 = {P1×P2×P3,P1×
P2,P1 × P3},S2 = {P1,P2,P3} and S3 = {P1 × P2 × P3,P2 ×
P3,P1×P3}. Also G−S1 has two components such as an iso-
lated vertex and a connected component which is an arithmetic
graph P1×P2. Therefore S1 is not a super vertex cut of G . If
we include the isolated vertex to S1,the graph G−{S∪P1} is
a connected graph P1×P2,and hence by sub case(i)there does
not exist any super vertex cut. Similarly for other vertex cuts
S2 and S3.
Case (ii) When r > 3
Using the above procedure we can choose the two vertices as
v1 = Pi for any i = 1,2,3, . . .r and v2 = P1×P2×P3×·· ·×Pr.
The graph G− S has exactly two components namely the
edge v1v2 and a connected component containing the ver-
tices which are the combinations of product of 2 primes,3
primes,. . . ,(r−2) primes in the vertex set {P1,P2,P3.....Pi−1,
Pi+1, . . . ,Pr} and the adjacency according to the definition of
an arithmetic graph. Since each component has no isolated
vertices, by the definition, S is a super vertex cut.
Therefore κsc(G) = |S|
= |X |+ |N(v1)− v2|+ |N(v2)− v1|
= 1+ai ∏ limr

j=1,i 6= j(a j +1)−2+ r−1
= ai ∏ limr

j=1,i6= j(a j +1)+ r−2

Theorem 3.2. For an arithmetic graph G = Vn,n = Pa1
1 ×

Pa2
2 ,a1 > 1,a2 = 1 then κsc(G) = ∞.

Proof. Consider the arithmetic graph G =Vn where a1 = r >
1;a2 = 1. For every v ∈V (G)

d(v) =


r i f v = P1 or P2

r+1 i f v = P1×P2

1 i f v = Pk
1 ,k = 2 . . .r

2 i f v = Pk
1 ×P2,k = 2 . . .r

By the definition of arithmetic graph and the above procedure
we can easily observe that the two adjacent vertices whose
degree sum is minimum are P1×P2 and Pk

1 or Pi;i=1,2 and
Pk

1 ×P2;k = 2,3, ..r.By the procedure it is clear that there does
not exist any super vertex cut for G. Hence κsc(G) = ∞.

Theorem 3.3. For an arithmetic graph G = Vn,n = Pa1
1 ×

Pa2
2 ,a1,a2 > 1 then κsc(G) = a1a2.

Proof. By theorem 3.3 and the procedure we can observe that
adjacent vertices whose degree sum is minimum are Pa1

1 ,a1 >
1 and P1×Pa2

2 ,a2 > 1 or Pa2
2 and Pa1

1 ×P2,a1,a2 > 1
Therefore, κsc(G) = d(Pa1

1 )+d(P1×Pa2
2 )−2+(a1−1)(a2−

1)
= a1 +a2 +1−2+(a1−1)(a2−1)
= a1 +a2−1+(a1−1)(a2−1)
= a1 +(a2−1)(1+a1−1)
= a1 +a1(a2−1)
= a1a2.

4. Hyper connectivity of an arithmetic
graph

The definition of a hyper connectivity number of a graph is
a set S ⊂ V (G) is called a hyper vertex cut if G− S is not
connected and
(i)Each component of G−S contains no isolated vertices
(ii)Exactly one component of G− S is K2. The hyper con-
nectivity κhc(G) is the minimum cardinality over all hyper
vertex cuts in G. If there doesnot exist such S then κhc(G)=∞.

Remark 4.1. We used a procedure for finding the super con-
neced number of an arithmetic graph. Similarly the following
steps are used to find the hyper connectivity number κhc(G)
of an arithmetic graph G =Vn.
Let G = Vn be an arithmetic graph where n = pa1

1 × pa2
2 ×

·· ·× par
r ,ai ≥ 1 and Ps

i are distinct primes. Let the vertex set
of G be V (G) = {v1,v2,v3, . . .vn}.
Step 1,2,3 follows from procedure 2.1
Step.4:Observe G− S,if everycomponent of G− S are not
isolated vertices and exactly one component is K2 then S is
a hyper vertex cut and |S| is a hyper connectivity number.
If not,S is not a hyper vertex cut of G and hence the hyper
connectivity number is ∞.

Theorem 4.2. In an arithmetic graph G =Vn,n = Pa1
1 ×Pa2

2 ,
if at least one ai = 1, i = 1,2;then κhc(G) = ∞.

Proof. Case (i) If both ai = 1, i = 1,2;then by theorem 2.1,
the graph does not satisfy hyper connecivity property. Hence
κhc(G) = ∞.
Case (ii) If any one of the ai = 1 and the other greater than
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one then by theorem 1.6,G is a bipartite graph in which one
of the partition contains exactly two vertices of degree greater
than one andall the other vertices are of degree one.By ap-
plying procedure2,the set S = {P2,P1×P2} makes the graph
disconnected with exactly one component is K2 and the other
components are isolated vertices.Thus,by the definition 3.1,
κhc(G) = ∞.

Theorem 4.3. For an arithmetic graph G = Vn,n = Pa1
1 ×

Pa2
2 ,P1 and P2 are distinct primes and a1 = a2 = 2;

then κhc(G) = ∞.

Proof. Clearly the given arithmetic graph G contains 8 ver-
tices.Let the vertex set V (G) be {P1,P2,P2

1 ,P
2
2 ,P1×P2,P2

1 ×
P2,P1×P2

2 ,P
2
1 ×P2

2 } By applying the procedure,we get the set
S = {P1,P2,P1×P2}.Clearly G−S has exactly three compo-
nents in which two components are k2 and the third component
is an isolated vertex.Hence we get κhc(G) = ∞.

Theorem 4.4. For an arithmetic graph G =Vn,n = Pa1
1 ×Pa2

2
where a1 > 2,a2 ≥ 2;then κhc(G) = a1a2.

Proof. It is clear that by theorem 1.6 the arithmetic graph
G =Vn,n = Pa1

1 ×Pa2
2 ;a1 > 2,a2 ≥ 2 is a bipartite graph.Let

X1,X2 be the partitions such that X1 = {P1,P2
1 , ...P

a1
1 ,P2,P2

2 , ...
Pa2

2 } and X2 = {P1×P2,P1×P2
2 , ...,P1×Pa2

2 ,P2
1 ×P2,P2

1 ×
P2

2 , ...,P
2
1 ×Pa2

2 ,P3
1 ×P2,P3

1 ×P2
2 ...P

3
1 ×Pa2

2 , ...Pa1
1 ×P2,P

a1
1 ×

P2
2 , ...,P

a1
1 ×Pa2

2 }.By theorem1.5,the vertex cut of G is
S = {P1 × P2,P1 × P2

2 , ...,P1 × Pa2−1
2 ,P1,P2

1 , ...,P
a1−1
1 ,Pa1

1 ×
Pa2

2 ,a1 > 1,a2 > 1}. Since G−S satisfies the requirement of
hyper connectivity property,we have S is the hyper vertex cut
of G and κhc(G) = |S|= a2 +a1 +1+(a1 +1)(a2 +1)−2 =
a1a2.

Theorem 4.5. For an arithmetic graph G = Vn,n = pa1
1 ×

pa2
2 × . . .× par

r where ai = 1 for every i then

κhc(G) =

{
∞ for r ≤ 3
ai ∏ limr

j=1,i6= j(a j +1)+ r−2 for r > 3

Proof. The theorem follows from theorem 3.1.

Theorem 4.6. For an arithmetic graph G = Vn,n = pa1
1 ×

pa2
2 × . . .× par

r where ai > 1 for at least one i, i = 1,2, . . . ,r
then κhc(G) = κsc(G) =[
|B|∏ limr

i=1,i/∈B(ai +1)−1
]
+[|B−B′|+∑ limi∈B′ ai]

∏ limr
i=1,i/∈B(ai + 1)− 2+ n+m, where B ⊆ {1,2,r} and n

denote the number of vertices of degree r and p2
1× p2

2× . . .×
p2

r ≤ m≤ pα1
1 × pα2

2 × . . .× pαr
r ,2≤ αi ≤ ai; i = 1,2, ..r.

Proof. Using the procedure choose two adjacent vertices
whose degree sum is minimum are of the form,pai

i ,ai > 1 and
pa1

1 × pa2
2 × . . .× par

r where (ai = 1)1≤ a j ≤ α j,( j 6= i) ; j =
1,2, i−1, i+1, ...r. Applying step 3 of the procedure, we get
the vertex cut S consist of N

(
pai

i

)
,ai > 1 and

N
(

pa1
1 × pa2

2 × . . .× par
r
)
,ai = 1.Clearly the graph G−S con-

tains n+m isolated vertices where n = |S1| the number of
vertices having degree r in G and m = |S2| the number of

vertices which are of the form p2
1 × p2

2 × . . .× p2
r ≤ m ≤

pα1
1 × pα2

2 × . . .× pαr
r ,2≤ αi ≤ ai; i = 1,2, ..r.Clearly S is not

a hyper vertex cut. But S3 = S∪S1∪S2 is a hyper vertex cut
of G having exactly one k2 and a connected component having
more than two vertices in G−S3.Therefore κhc(G)= |S3|.
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