Super connected and hyper connected arithmetic graphs

L. Mary Jenitha ${ }^{1 *}$ and S. Sujitha ${ }^{2}$

Abstract

A connected graph G is said to be super connected if every minimum vertex-cut isolates a vertex of G. Moreover a graph is said to be hyper connected if for every minimum vertex cut $S, G-S$ has exactly two components, one of which is an isolated vertex. In this paper, we focussed the concept in arithmetic graphs V_{n} and proved that, for an arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times P_{2}^{a_{2}} \times \ldots \times P_{r}^{a_{r}}$ where $0<a_{i} \leq 2$ and $r>3$ is super and hyper connected and for at least one $a_{i} \geq 3$, the graph $G=V_{n}$ is only super connected. Also, it is clear that for every arithmetic graph $G=V_{n}, n$ is any integer is super and hyper edge connected.

Keywords

Arithmetic graph, super connected, hyper connected, super connectivity, hyper connectivity.
AMS Subject Classification 05C40.
${ }^{1}$ Department of Mathematics, Manonmaniam Sundaranar University,Abishekapatti, Tirunelveli, Tamil nadu, India.
${ }^{2}$ Department of Mathematics, Holy Cross College, Nagercoil , India.
*Corresponding author: ${ }^{1}$ jeni.mathematics@gmail.com; ${ }^{2}$ sujitha.s@holycrossngl.edu.in
Article History: Received 01 January 2020; Accepted 12 February 2020

Contents

1 Introduction

2 Super connected and Hyper connected Arithmetic Graphs 244
3 Super Connectivity of an arithmetic graph $\kappa_{s c}(G)$ 245
4 Hyper connectivity of an arithmetic graph 246
References 247

1. Introduction

For notation and graph theory terminalogy not given here, we follow [2]. In [4] the connectivity number of an arithmetic graph is studied by L. Mary Jenitha and S. Sujitha. Later the average connectivity of the same graph is discussed by the same authors in[5]. The super connected and hyper connected definitions are from [8] and authors used the concept for studying line graphs. In this paper we studied the concepts super connected, hyper connected, super connectivity, hyper connectivity of an arithmetic graph. All graphs in this paper considered are simple graphs. A connected graph G is super connected(super edge connected) if every minimum vertex -cut (edge-cut) S of $G, G-S$ has isolated vertices. The cardinality of the minimum vertex cut is the super connected number (super edge connected number) and is denoted by $\kappa_{s}(G)\left(\lambda_{s}(G)\right)$. A connected graph G is hyper connected (hyper edge connected) if every minimum vertex -cut(edgecut) S of $G, G-S$ has exactly two components, one of which
is an isolated vertex. The cardinality of the minimum vertex cut is the hyper connected number (hyper edge connected number) and is denoted by $\kappa_{h}(G)\left(\lambda_{h}(G)\right)$. A subset $S \subset V(G)$ is called a super - vertex cut (super - edge cut) if $G-S$ is not connected and every component contains at least two vertices. The super connectivity $\kappa_{s c}(G)$ is the minimum cardinality over all super vertex cuts in G. In general, super vertex -cuts (respectively super edge-cuts)in G do not always exist then the number is denoted by ∞. This concept is studied from [3]. Through out the article we used the notation for an arithmetic graph as $G=V_{n}, n=P_{1}^{a_{1}} \times P_{2}^{a_{2}} \times \ldots \times P_{r}^{a_{r}}$. Some authors used the notation as $G=V_{n}, n=P_{1}^{a_{1}} P_{2}^{a_{2}} \ldots P_{r}^{a_{r}}$ for an arithmetic graph. The following theorems are used in sequel.

Theorem 1.1. [2] For a connected graph $G, \kappa \leq \kappa^{\prime} \leq \delta$.
Theorem 1.2. [2] A vertex v of a tree G is a cut vertex of G if and only if $d(v)>1$.
Theorem 1.3. [6] For an arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times$ $P_{2}^{a_{2}} \times \ldots \times P_{r}^{a_{r}}$,
$\delta(G)=\left\{\begin{array}{l}r, r \geq 3 \\ 1, r=2\end{array}\right.$
Theorem 1.4. [4]For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times$ $p_{2}^{a_{2}}$ where p_{1} and p_{2} are distinct primes, then $\kappa\left(V_{n}\right)=$ $\kappa^{\prime}\left(V_{n}\right)=\left\{\begin{array}{l}1 \text { for } a_{i}=1 \text { and } a_{j}>1 ; i, j=1,2 \\ 2 \text { for } a_{i}>1 ; i=1,2\end{array}\right.$

Theorem 1.5. [5]For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times$
$p_{2}^{a_{2}}$ where p_{1} and p_{2} are distinct primes, $a_{1}, a_{2} \geq 1$ then $\varepsilon=$ $4 a_{1} a_{2}-a_{1}-a_{2}$, where ε is the size of the graph G.

2. Super connected and Hyper connected Arithmetic Graphs

In this section we identified super connected and hyper connected arithmetic graphs from the class of arithmetic graphs and their corresponding numbers.

Theorem 2.1. For an arithmetic graph $G=V_{n}, n=p_{1} \times p_{2} \times$ $\ldots \times p_{r}$ is super and hyper connected and
$\kappa_{s}(G)=\kappa_{h}(G)=\left\{\begin{array}{l}1, \text { if } r=2 \\ r, \text { if } r>2\end{array}\right.$
Proof. Case (i) when $r=2$
In this case G is a tree with an internal vertex and two end vertices. Let p_{1}, p_{2} be the end vertices and $p_{1} \times p_{2}$ be an internal vertex of G. By theorem 1.2, no end vertex of G is a cut vertex of G and every internal vertices of G are cut vertices. Therefore the vertex cut S (say) contains the internal vertex $p_{1} \times p_{2}$ only. Clearly the graph $G-S$ contains exactly two components namely the isolated vertices p_{1} and p_{2}. Therefore by definition, the graph G is hyper connected and super connected. Hence the super connected number $\kappa_{s}(G)=\kappa_{h}(G)=|S|=1$.

Case (ii) when $r=3$
In this case the arithmetic graph is $G=V_{n}$ where $n=p_{1} \times$ $p_{2} \times p_{3}$. Let the vertices of G be $\left\{p_{1}, p_{2}, p_{3}, p_{1} \times p_{2}, p_{1} \times\right.$ $\left.p_{3}, p_{2} \times p_{3}, p_{1} \times p_{2} \times p_{3}\right\}$. The minimum degree $\delta(G)$ is three and the graph has exactly four minimum degree vertices. Let the vertices be p_{1}, p_{2}, p_{3} and $p_{1} \times p_{2} \times p_{3}$. We can easily observe that $N\left(p_{1}\right)=\left\{p_{1} \times p_{2}, p_{1} \times p_{3}, p_{1} \times p_{2} \times p_{3}\right\}, N\left(p_{2}\right)=$ $\left\{p_{1} \times p_{2}, p_{2} \times p_{3}, p_{1} \times p_{2} \times p_{3}\right\}$,
$N\left(p_{3}\right)=\left\{p_{1} \times p_{3}, p_{2} \times p_{3}, p_{1} \times p_{2} \times p_{3}\right\}$ and $N\left(p_{1} \times p_{2} \times\right.$ $\left.p_{3}\right)=\left\{p_{1}, p_{2}, p_{3}\right\}$. The removal of $N\left(p_{1}\right)$ or $N\left(p_{2}\right)$ or $N\left(p_{3}\right)$ or $N\left(p_{1} \times p_{2} \times p_{3}\right)$ from V_{n} makes the graph disconnected and hence the sets
$N\left(p_{1}\right), N\left(p_{2}\right), N\left(p_{3}\right), N\left(p_{1} \times p_{2} \times p_{3}\right)$ are considered as the minimum vertex cut S of G. The graph $G-N\left(p_{1}\right)$ contains two components namely C_{1} and C_{2}. Clearly C_{1} is an isolated vertex p_{1} and C_{2} is a connected graph with $\left|V\left(C_{2}\right)\right|>1$ and $\left|E\left(C_{2}\right)\right| \geq 1$. Suppose C_{2} is not connected then it contradicts the adjacency of the arithmetic graph $G=V_{n}$. Thus in this case G is hyper connected and super connected. Hence
$\kappa_{s}(G)=\left|N\left(P_{1}\right)\right| \operatorname{or}\left|N\left(P_{2}\right)\right| \operatorname{or}\left|N\left(P_{3}\right)\right| \operatorname{or}\left|N\left(P_{1} \times P_{2} \times P_{3}\right)\right|=$ $3=\kappa_{h}(G)$.

Case (iii) when $r>3$
In this case the arithmetic graph is $G=V_{n}$, where $n=p_{1} \times$ $p_{2} \times \ldots \times p_{r}$. The vertex set of G is $\left\{p_{1}, p_{2} \ldots, p_{r}, p_{1} \times\right.$ $p_{2}, p_{1} \times p_{3}, \ldots, p_{1} \times p_{r}, p_{2} \times p_{3}, . ., p_{1} \times p_{2} \times p_{3}, \ldots, p_{1} \times p_{2} \times$ $\left.\ldots \times p_{r}\right\}$. To prove G is super connected. By theorem 1.3, it is easy to verify that the minimum degree of G is r and $d\left(p_{1} \times p_{2} \times \ldots \times p_{r}\right)=r$. Therefore the vertex $p_{1} \times p_{2} \times$ $\ldots \times p_{r}$ is adjacent to exactly r vertices. By the definition of an arithmetic graph $p_{1}, p_{2}, p_{3} \ldots, p_{r}$ are adjacent vertices
of $p_{1} \times p_{2} \times \ldots \times p_{r}$. Hence the set $S=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{r}\right\}$ form a minimum vertex cut of G. Suppose $G-S$ has no isolated vertices. Then $G-S$ is a disconnected graph containing connected components. Therefore the vertex $p_{1} \times$ $p_{2} \times \ldots \times p_{r}$ must be connected to some other vertices and hence $d\left(p_{1} \times p_{2} \times \ldots \times p_{r}\right)>r$ which is a contradiction to $d\left(p_{1} \times p_{2} \times \ldots \times p_{r}\right)=r$. This implies that G is super connected. Since $|s|=r$ we have $\kappa_{s}(G)=r$. Now to prove $G-S$ is hyper connected. Since G has only one minimum degree vertex $p_{1} \times p_{2} \times \ldots \times p_{r}$ and $\kappa(G) \leq \boldsymbol{\delta}(G)$ the minimum vertex cut S contains exactly r vertices namely $p_{1}, p_{2}, p_{3} \ldots, p_{r}$. Therefore $G-S$ contains an isolated vertex $p_{1} \times p_{2} \times \ldots \times p_{r}$ and a connected component. Hence G is hyper connected and the hyper connected number $\kappa_{h}(G)=r$.

Theorem 2.2. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times$ $p_{2}^{a_{2}} \times \ldots \times p_{r}^{a_{r}}$ where $a_{i} \leq 2$ and $r>3$ is super and hyper connected.

Proof. Consider the arithmetic graph $G=V_{n}$, let us classify that the vertices of G be prime vertices, prime power vertices, product of prime vertices and product of prime power vertices. Now we look into the adjacency of the vertices. Consider the vertex $v_{1}=\Pi \lim _{i=1}^{r} p_{i}^{a_{i}}$, where $a_{i}^{\prime} s$ are the maximum exponent of p_{i}, from the vertices of the given graph G. Clearly $d\left(v_{1}\right)=$ r. Choose $v_{2}=\Pi \lim _{i=1}^{r} p_{i}^{b_{i}}$ where $b_{i}<a_{i}$ for at least one i, such that the degree of v_{2} must be greater than v_{1} by at least one. Since otherwise it contradicts the definition of an arithmetic graph. Therefore $d\left(v_{1}\right)<d\left(v_{2}\right)$, continuing the process we observe that $d\left(v_{1}\right)<d\left(v_{2}\right) \leq \cdots \leq d\left(p_{r}\right) \cdots \leq$ $\cdots \leq d\left(p_{1}\right)$ (Here the equality holds for some of the vertices). We can easily say that the vertex v_{1} is the only vertex with minimum degree. Hence $N\left(v_{1}\right)$ is the minimum vertex cut, let it be S. Clearly $G-S$ has an isolated vertex v_{1}. Therefore the given graph is super connected and hyper connected. Hence $\kappa_{s}(G)=\kappa_{h}(G)=r$.

Remark 2.3. If $G=V_{n}$ be an arithmetic graph where $n=$ $p_{1}^{a_{1}} \times p_{2}^{a_{2}}$, with the order of a_{i} is not considered then
$n(S)=\left\{\begin{array}{l}1 \text { if } a_{1}=1, a_{2} \geq 2(\text { or }) a_{1}, a_{2}>2 \\ 2 \text { if } a_{1}=2 \text { and } a_{2}>2 \\ 3 \text { if } a_{1}, a_{2}=2 .\end{array}\right.$ where $n(S)$ is the number of minimum vertex cuts of G, and the order is not considered.

Proof. The proof follows from the definition of an arithmetic graph.

Theorem 2.4. For an arithmetic graph $G=V_{n}$, the following holds (i)If $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}, a_{1}>2$ and $a_{2}=2$, then the number of vertices having minimum degree is $2\left(a_{1}-1\right)$ and the graph has two minimum vertex cuts. (ii)If $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} ; a_{1}, a_{2}>$ 2 , then the number of vertices having minimum degree is $\left(a_{1}-1\right)\left(a_{2}-1\right)$ and the graph has only one minimum vertex cut.

Proof. (i) Consider the arithmetic graph $G=V_{n}$, where $n=$ $p_{1}^{a_{1}} \times p_{2}^{a_{2}} ; a_{1}>2$ and $a_{2}=2$. The vertex set $V(G)=\left\{p_{1}, p_{1}^{2}, p_{1}^{3}\right.$ $\left.p_{2}, p_{1}^{2} \times p_{2}, \ldots, p_{1}^{a_{1}} \times p_{2}, p_{1} \times p_{2}^{2}, p_{1}^{2} \times p_{2}^{2}, \ldots, p_{1}^{a_{1}} \times p_{2}^{2}\right\}$. Here the vertices $\left\{p_{1}^{a_{i}} ; 2 \leq a_{i} \leq a_{1}\right\}$ are adjacent to exactly two vertices namely $p_{1} \times p_{2}$ and $p_{1} \times p_{2}^{2}$. Hence $d\left(p_{1}^{2}\right)=d\left(p_{1}^{3}\right)=$ $\cdots=d\left(p_{1}^{a_{1}}\right)=2$. Thus $\left(a_{1}-1\right)$ vertices of G have degree 2. Also the vertices $\left\{p_{1}^{2} \times p_{2}^{2}, p_{1}^{3} \times p_{2}^{2}, \ldots, p_{1}^{a_{1}} \times p_{2}^{2}\right\}$ are adjacent to the vertices p_{1} and p_{2}. That is $N\left(p_{1}^{a_{i}} \times p_{2}^{2}\right)=$ $\left\{p_{1}, p_{2}\right\}$ for $2 \leq a_{i} \leq a_{1}$. Hence $d\left(p_{1}^{2} \times p_{2}^{2}\right)=d\left(p_{1}^{3} \times p_{2}^{2}\right)=$ $\cdots=d\left(p_{1}^{a_{1}} \times p_{2}^{2}\right)=2$. Again $\left(a_{1}-1\right)$ vertices are of degree 2. Thus the total number of vertices of degree 2 are $\left(a_{1}-1\right)+\left(a_{1}-1\right)=2\left(a_{1}-1\right)$. Also, we can easily say that the given arithmetic graph G has two minimum vertex cuts $\left\{p_{1}, p_{2}\right\}$ and $\left\{p_{1} \times p_{2}, p_{1} \times p_{2}^{2}\right\}$.
(ii) If $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} ; a_{1}, a_{2}>2$. The vertex set of G is $V(G)=\left\{p_{1}, p_{1}^{2}, p_{1}^{3}, \ldots, p_{1}^{a_{1}}, p_{2}, p_{2}^{2}, p_{2}^{3}, \ldots, p_{2}^{a_{2}}, p_{1} \times p_{2}, p_{1} \times\right.$ $p_{2}^{2}, \ldots, p_{1} \times p_{2}^{a_{2}}, p_{1}^{2} \times p_{2}, p_{1}^{2} \times p_{2}^{2}, \ldots, p_{1}^{2} \times p_{2}^{a_{2}}, p_{1}^{2} \times p_{2}, \ldots$, $\left.p_{1}^{a_{1}} \times p_{2}, p_{1}^{a_{1}} \times p_{2}^{2}, \ldots, p_{1}^{a_{1}} \times p_{2}^{a_{2}}\right\}$ By $1.3, \delta(G)=2$. Let $A=$ $\left\{p_{1}^{2}, p_{1}^{3}, \ldots, p_{1}^{a_{1}}\right\} ;|A|=\left(a_{1}-1\right)$ and $B=\left\{p_{2}^{2}, p_{2}^{3}, \ldots, p_{2}^{a_{2}}\right\}$; $|B|=\left(a_{2}-1\right)$. Clearly the cartesian product of A and B is the set $A \times B$ containing $\left(a_{1}-1\right) \times\left(a_{2}-1\right)$ vertices. By the definition of an arithmetic graph, these $\left(a_{1}-1\right) \times\left(a_{2}-1\right)$ vertices have the common neighbourhoods p_{1} and p_{2}. Thus the vertex set $\left\{p_{1}, p_{2}\right\}$ is the only minimum vertex cut of G.
Theorem 2.5. In an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$, at least one $a_{i} \geq 3$ then $\kappa_{h}(G)=\infty$,
$\kappa_{s}(G)=\left\{1\right.$, if $a_{1} \geq 3$ and $a_{2}=12$, if $a_{1} \geq 3$ and $a_{2} \geq 1$.
Proof. Case (i)
Without loss of generality let us assume that $a_{1} \geq 3$ and $a_{2}=1$. Let the vertices of G be $V(G)=\left\{p_{1}, p_{2}, p_{1}^{2}, p_{1}^{3}, p_{1} \times\right.$ $\left.p_{2}, p_{1}^{2} \times p_{2}, p_{1}^{3} \times p_{2}\right\}$. Clearly $p_{1} \times p_{2}$ is the only neighbour for the vertices $\left\{p_{1}^{2}, p_{1}^{3}, \ldots, p_{1}^{a_{1}}\right\}$. Hence $N\left(p_{1}^{2}\right)=N\left(p_{1}^{3}\right)=$ $\cdots=N\left(p_{1}^{a_{1}}\right)=\left\{p_{1} \times p_{2}\right\}$. By the result 2.3, the vertex set $S=\left\{p_{1} \times p_{2}\right\}$ is the minimum vertex cut of the given graph G. Here $G-S$ is a disconnected graph with at least a_{1} components namely the isolated vertices $\left\{p_{1}^{2}, p_{1}^{3}, \ldots, p_{1}^{a_{1}}\right\}$ and a connected graph. Thus G is super connected but not hyper connected. Since S contains only one element, the super connected number $\kappa_{s}(G)=1$. Since the graph is not hyper connected the hyperconnected number $\kappa_{h}(G)=\infty$.
Case (ii)
Without loss of generality let us assume that $a_{1} \geq 3$ and $a_{2}=2$ Let the vertices of G be $V(G)=\left\{p_{1}, p_{2}, p_{1}^{2}, p_{2}^{2}, p_{1}^{3}, p_{1} \times\right.$ $\left.p_{2}, p_{1} \times p_{2}^{2}, p_{1}^{2} \times p_{2}, p_{1}^{3} \times p_{2}, p_{1}^{2} \times p_{2}^{2}, p_{1}^{3} \times p_{2}^{2},\right\}$. Also in 1.3, $\delta(G)=2$ and by result 2.3 , there exists only two minimum vertex cuts of G. Since the vertices $p_{1}^{2}, p_{1}^{3}, p_{2}^{2}$ are adjacent only to the vertices $p_{1} \times p_{2}$ and $p_{1} \times p_{2}^{2}, N\left(p_{1}^{2}\right)=N\left(p_{1}^{3}\right)=$ $N\left(p_{2}^{2}\right)=\left\{p_{1} \times p_{2}, p_{1} \times p_{2}^{2}\right\}$. Also the vertices $p_{1}^{2} \times p_{2}^{2}, p_{1}^{3} \times$ p_{2}^{2} are adjacent only to p_{1} and p_{2}. We have $N\left(p_{1}^{2} \times p_{2}^{2}, p_{1}^{3} \times\right.$ $\left.p_{2}^{2}\right)=\left\{p_{1}, p_{2}\right\}$. Therefore $S_{1}=\left\{p_{1} \times p_{2}, p_{1} \times p_{2}^{2}\right\}$ and $S_{2}=$ $\left\{p_{1}, p_{2}\right\}$ are the two minimum vertex cuts of G and the removal of S_{1} or S_{2} from G makes the graph disconnected with at least three components having two isolated vertices. Hence the graph is super connected and the cardinality of the mini-
mum vertex cut is the super connected number $\kappa_{s}(G)=2$. But
 Case (iii)
Let $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ if both $a_{i}>2$, the vertices of G be $V(G)=$ $\left\{p_{1}, p_{1}^{2}, p_{1}^{3}, \ldots, p_{1}^{a_{1}}, p_{2}, p_{2}^{2}, p_{2}^{3}, \ldots, p_{2}^{a_{2}}, p_{1} \times p_{2}, p_{1} \times p_{2}^{2}, \ldots, p_{1}\right.$ $\times p_{2}^{a_{2}}, p_{1}^{2} \times p_{2}, p_{1}^{2} \times p_{2}^{2}, \ldots, p_{1}^{2} \times p_{2}^{a_{2}}, p_{1}^{3} \times p_{2}, p_{1}^{3} \times p_{2}^{2}, \ldots, p_{1}^{3} \times$ $\left.p_{2}^{a_{2}}, \ldots, p_{1}^{a_{1}} \times p_{2}, \ldots, p_{1}^{a_{1}} \times p_{2}^{a_{2}}\right\}$. By result 2.3 , there exists only one minimum vertex cut, and by theorem 1.4 let it be $S=\left\{p_{1}, p_{2}\right\}$ but there are more than one vertex which are adjacent only to p_{1} and p_{2}. Hence $G-S$ is a disconnected graph with at least two isolated vertices and a connected component.Therefore the graph is super connected but not hyper connected. Hence $\kappa_{s}(G)=|S|=2$ and $\kappa_{h}(G)=\infty$

Theorem 2.6. In an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\cdots \times p_{r}^{a_{r}}$ at least one $a_{i} \geq 3$ then G is super connected but not hyper connected.

Proof. Consider the arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\cdots \times p_{r}^{a_{r}}$ at least one $a_{i} \geq 3$. In $[1],|V(G)|=\left[\left(a_{1}+1\right)\left(a_{2}+\right.\right.$ $\left.1) \ldots\left(a_{r}+1\right)\right]-1$ and $\delta(G)=r$. Let $v_{1}=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\cdots \times p_{r}^{a_{r}}$ be the vertex of G with higher exponent a_{i} and arrange $a_{i}^{\prime} s$ such that $a_{1} \geq a_{2} \geq a_{3} \cdots \geq a_{r}$. Here $d\left(v_{1}\right)=r$. Let us consider the vertex $v_{2}=p_{1}^{b_{1}} \times p_{2}^{b_{2}} \times \cdots \times p_{r}^{b_{r}}, b_{1} \geq$ $b_{2} \geq b_{3} \cdots \geq b_{r}$ where $b_{1}=a_{1}-1$ and $b_{i}=a_{i}$ for every $i=1,2, \ldots, r$ also $d\left(v_{2}\right)=r$. Thus there exists atleast two vertices of minimum degree with same neighbourhood and the set, $S=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ is the minimum vertex cut of G. Hence the cardinality of S is the super connected number. Thus $\kappa_{s}(G)=r$. Since $G-S$ has more than two isolated vertices the graph is not hyper connected hence the hyper connected number is $\kappa_{h}(G)=\infty$

Remark 2.7. In an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\cdots \times p_{r}^{a_{r}} a_{i} \leq 2$ the super connected and hyper connected number are equal to its connecivity number $\kappa(G)$.
(i.e) $\kappa_{s}(G)=\kappa_{h}(G)=\kappa(G)$.

Remark 2.8. In an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\cdots \times p_{r}^{a_{r}}$ at least one $a_{i}>2$ then $\kappa_{s}(G)=\kappa(G) \neq \kappa_{h}(G)$.
Theorem 2.9. Every arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times$ $p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}$ is super and hyper edge connected.

Proof. The proof is obvious from the definition and above results

3. Super Connectivity of an arithmetic graph $\kappa_{s c}(G)$

The definition of a super connectivity number of a graph is studied from [3].The authors Jun-Ming Xu, Min Lu, Meijie Ma, Angelika Hellwig used the definition for line graphs. We studied the concept in arithmetic graphs.
The following steps are used to find the super connectivity number $\kappa_{s c}(G)$ of an arithmetic graph $G=V_{n}$. Let $G=V_{n}$ be an arithmetic graph where $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, a_{i} \geq 1$ and P_{i}^{s} are distinct primes. Let the vertex set of G be $V(G)=$
$\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$.
step1:
Choose two vertices u and v in $V(G)$ such that $d(u)+d(v)$ $=\min \left\{d\left(v_{i}\right)+d\left(v_{j}\right) \mid v_{i} v_{j} \in E(G), i \neq j, i, j=1,2 \ldots r\right\}$
step2:
Take $X=N(u)-\{v\}$ and $Y=N(v)-\{u\}$.
step3:
Find T and S such that T is the set of vertices which are adjacent only to X and Y, and $S=\{T \cup X \cup Y\}$.

step4:

Observe $G-S$, If every component of $G-S$ contains no isolated vertices then S is a super vertex cut and $|S|$ is a super connectivity number .If not, S is not a super connectivity set of G and the super connectivity number is ∞.

Theorem 3.1. In an arithmetic graph $G=V_{n}$, $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{r}^{a_{r}}$ where $a_{i}=1$ for every i
then $\kappa_{s c}(G)=\left\{\begin{array}{l}\infty \text { for } r \leq 3 \\ a_{i} \prod \lim _{j=1, i \neq j}^{r}\left(a_{j}+1\right)+r-2 \text { for } r>3\end{array}\right.$
Proof. Case (i) When $r \leq 3$
Sub case (i) If $r=2$ then the arithmetic graph is a tree with three vertices so the internal vertex is a cut vertex, say v and the graph $G-v$ has two isolated vertices. Hence G has no super vertex cut. Therefore by definition $\kappa_{s c}(G)=\infty$.
Sub case (ii)If $r=3$ then, it is clear that G contains exactly three minimum vertex cuts namely $S_{1}=\left\{P_{1} \times P_{2} \times P_{3}, P_{1} \times\right.$ $\left.P_{2}, P_{1} \times P_{3}\right\}, S_{2}=\left\{P_{1}, P_{2}, P_{3}\right\}$ and $S_{3}=\left\{P_{1} \times P_{2} \times P_{3}, P_{2} \times\right.$ $\left.P_{3}, P_{1} \times P_{3}\right\}$. Also $G-S_{1}$ has two components such as an isolated vertex and a connected component which is an arithmetic graph $P_{1} \times P_{2}$. Therefore S_{1} is not a super vertex cut of G. If we include the isolated vertex to S_{1}, the graph $G-\left\{S \cup P_{1}\right\}$ is a connected graph $P_{1} \times P_{2}$, and hence by sub case(i)there does not exist any super vertex cut. Similarly for other vertex cuts S_{2} and S_{3}.
Case (ii) When $r>3$
Using the above procedure we can choose the two vertices as $v_{1}=P_{i}$ for any $i=1,2,3, \ldots r$ and $v_{2}=P_{1} \times P_{2} \times P_{3} \times \cdots \times P_{r}$. The graph $G-S$ has exactly two components namely the edge $v_{1} v_{2}$ and a connected component containing the vertices which are the combinations of product of 2 primes, 3 primes,..., $(r-2)$ primes in the vertex set $\left\{P_{1}, P_{2}, P_{3} \ldots . . P_{i-1}\right.$, $\left.P_{i+1}, \ldots, P_{r}\right\}$ and the adjacency according to the definition of an arithmetic graph. Since each component has no isolated vertices, by the definition, S is a super vertex cut.
Therefore $\kappa_{s c}(G)=|S|$
$=|X|+\left|N\left(v_{1}\right)-v_{2}\right|+\left|N\left(v_{2}\right)-v_{1}\right|$
$=1+a_{i} \prod_{j=1, i \neq j}^{r}\left(a_{j}+1\right)-2+r-1$
$=a_{i} \prod_{j \lim _{j=1, i \neq j}^{r}}\left(a_{j}+1\right)+r-2$

Theorem 3.2. For an arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times$ $P_{2}^{a_{2}}, a_{1}>1, a_{2}=1$ then $\kappa_{s c}(G)=\infty$.

Proof. Consider the arithmetic graph $G=V_{n}$ where $a_{1}=r>$ $1 ; a_{2}=1$. For every $v \in V(G)$
$d(v)=\left\{\begin{array}{l}r \text { if } v=P_{1} \text { or } P_{2} \\ r+1 \text { if } v=P_{1} \times P_{2} \\ 1 \text { if } v=P_{1}^{k}, k=2 \ldots r \\ 2 \text { if } v=P_{1}^{k} \times P_{2}, k=2 \ldots r\end{array}\right.$
By the definition of arithmetic graph and the above procedure we can easily observe that the two adjacent vertices whose degree sum is minimum are $P_{1} \times P_{2}$ and P_{1}^{k} or $P_{i} ; \mathrm{i}=1,2$ and $P_{1}^{k} \times P_{2} ; k=2,3, . . r$. By the procedure it is clear that there does not exist any super vertex cut for G. Hence $\kappa_{s c}(G)=\infty$.

Theorem 3.3. For an arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times$ $P_{2}^{a_{2}}, a_{1}, a_{2}>1$ then $\kappa_{s c}(G)=a_{1} a_{2}$.

Proof. By theorem 3.3 and the procedure we can observe that adjacent vertices whose degree sum is minimum are $P_{1}^{a_{1}}, a_{1}>$ 1 and $P_{1} \times P_{2}^{a_{2}}, a_{2}>1$ or $P_{2}^{a_{2}}$ and $P_{1}^{a_{1}} \times P_{2}, a_{1}, a_{2}>1$
Therefore, $\kappa_{s c}(G)=d\left(P_{1}^{a_{1}}\right)+d\left(P_{1} \times P_{2}^{a_{2}}\right)-2+\left(a_{1}-1\right)\left(a_{2}-\right.$ 1)
$=a_{1}+a_{2}+1-2+\left(a_{1}-1\right)\left(a_{2}-1\right)$
$=a_{1}+a_{2}-1+\left(a_{1}-1\right)\left(a_{2}-1\right)$
$=a_{1}+\left(a_{2}-1\right)\left(1+a_{1}-1\right)$
$=a_{1}+a_{1}\left(a_{2}-1\right)$
$=a_{1} a_{2}$.

4. Hyper connectivity of an arithmetic graph

The definition of a hyper connectivity number of a graph is a set $S \subset V(G)$ is called a hyper vertex cut if $G-S$ is not connected and
(i)Each component of $G-S$ contains no isolated vertices
(ii)Exactly one component of $G-S$ is K_{2}. The hyper connectivity $\kappa_{h c}(G)$ is the minimum cardinality over all hyper vertex cuts in G. If there doesnot exist such S then $\kappa_{h c}(G)=\infty$.

Remark 4.1. We used a procedure for finding the super conneced number of an arithmetic graph. Similarly the following steps are used to find the hyper connectivity number $\kappa_{h c}(G)$ of an arithmetic graph $G=V_{n}$.
Let $G=V_{n}$ be an arithmetic graph where $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\cdots \times p_{r}^{a_{r}}, a_{i} \geq 1$ and P_{i}^{s} are distinct primes. Let the vertex set of G be $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$.
Step 1,2,3 follows from procedure 2.1
Step.4:Observe $G-S$, if everycomponent of $G-S$ are not isolated vertices and exactly one component is K_{2} then S is a hyper vertex cut and $|S|$ is a hyper connectivity number. If not,S is not a hyper vertex cut of G and hence the hyper connectivity number is ∞.

Theorem 4.2. In an arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times P_{2}^{a_{2}}$, if at least one $a_{i}=1, i=1,2$;then $\kappa_{h c}(G)=\infty$.

Proof. Case (i) If both $a_{i}=1, i=1,2$;then by theorem 2.1, the graph does not satisfy hyper connecivity property. Hence $\kappa_{h c}(G)=\infty$.
Case (ii) If any one of the $a_{i}=1$ and the other greater than
one then by theorem $1.6, G$ is a bipartite graph in which one of the partition contains exactly two vertices of degree greater than one andall the other vertices are of degree one.By applying procedure2, the set $S=\left\{P_{2}, P_{1} \times P_{2}\right\}$ makes the graph disconnected with exactly one component is K_{2} and the other components are isolated vertices.Thus, by the definition 3.1, $\kappa_{h c}(G)=\infty$.

Theorem 4.3. For an arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times$ $P_{2}^{a_{2}}, P_{1}$ and P_{2} are distinct primes and $a_{1}=a_{2}=2$;
then $\kappa_{h c}(G)=\infty$.
Proof. Clearly the given arithmetic graph G contains 8 vertices.Let the vertex set $V(G)$ be $\left\{P_{1}, P_{2}, P_{1}^{2}, P_{2}^{2}, P_{1} \times P_{2}, P_{1}^{2} \times\right.$ $\left.P_{2}, P_{1} \times P_{2}^{2}, P_{1}^{2} \times P_{2}^{2}\right\}$ By applying the procedure, we get the set $S=\left\{P_{1}, P_{2}, P_{1} \times P_{2}\right\}$. Clearly $G-S$ has exactly three components in which two components are k_{2} and the third component is an isolated vertex.Hence we get $\kappa_{h c}(G)=\infty$.

Theorem 4.4. For an arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times P_{2}^{a_{2}}$ where $a_{1}>2, a_{2} \geq 2$;then $\kappa_{h c}(G)=a_{1} a_{2}$.

Proof. It is clear that by theorem 1.6 the arithmetic graph $G=V_{n}, n=P_{1}^{a_{1}} \times P_{2}^{a_{2}} ; a_{1}>2, a_{2} \geq 2$ is a bipartite graph.Let X_{1}, X_{2} be the partitions such that $X_{1}=\left\{P_{1}, P_{1}^{2}, \ldots P_{1}^{a_{1}}, P_{2}, P_{2}^{2}, \ldots\right.$ $\left.P_{2}^{a_{2}}\right\}$ and $X_{2}=\left\{P_{1} \times P_{2}, P_{1} \times P_{2}^{2}, \ldots, P_{1} \times P_{2}^{a_{2}}, P_{1}^{2} \times P_{2}, P_{1}^{2} \times\right.$ $P_{2}^{2}, \ldots, P_{1}^{2} \times P_{2}^{a_{2}}, P_{1}^{3} \times P_{2}, P_{1}^{3} \times P_{2}^{2} \ldots P_{1}^{3} \times P_{2}^{a_{2}}, \ldots P_{1}^{a_{1}} \times P_{2}, P_{1}^{a_{1}} \times$ $\left.P_{2}^{2}, \ldots, P_{1}^{a_{1}} \times P_{2}^{a_{2}}\right\}$.By theorem1.5, the vertex cut of G is $S=\left\{P_{1} \times P_{2}, P_{1} \times P_{2}^{2}, \ldots, P_{1} \times P_{2}^{a_{2}-1}, P_{1}, P_{1}^{2}, \ldots, P_{1}^{a_{1}-1}, P_{1}^{a_{1}} \times\right.$ $\left.P_{2}^{a_{2}}, a_{1}>1, a_{2}>1\right\}$. Since $G-S$ satisfies the requirement of hyper connectivity property, we have S is the hyper vertex cut of G and $\kappa_{h c}(G)=|S|=a_{2}+a_{1}+1+\left(a_{1}+1\right)\left(a_{2}+1\right)-2=$ $a_{1} a_{2}$.
Theorem 4.5. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times$ $p_{2}^{a_{2}} \times \ldots \times p_{r}^{a_{r}}$ where $a_{i}=1$ for every i then
$\kappa_{h c}(G)=\left\{\begin{array}{l}\infty \text { for } r \leq 3 \\ a_{i} \prod \lim _{j=1, i \neq j}^{r}\left(a_{j}+1\right)+r-2 \text { for } r>3\end{array}\right.$
Proof. The theorem follows from theorem 3.1.
Theorem 4.6. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times$ $p_{2}^{a_{2}} \times \ldots \times p_{r}^{a_{r}}$ where $a_{i}>1$ for at least one $i, i=1,2, \ldots, r$ then $\kappa_{h c}(G)=\kappa_{s c}(G)=$
$\left[|B| \prod_{1=1, i \neq B}^{r}\left(a_{i}+1\right)-1\right]+\left[\left|B-B^{\prime}\right|+\sum \lim _{i \in B^{\prime}} a_{i}\right]$
$\prod_{i=1, i \notin B}^{r}\left(a_{i}+1\right)-2+n+m$, where $B \subseteq\{1,2, r\}$ and n denote the number of vertices of degree r and $p_{1}^{2} \times p_{2}^{2} \times \ldots \times$ $p_{r}^{2} \leq m \leq p_{1}^{\alpha_{1}} \times p_{2}^{\alpha_{2}} \times \ldots \times p_{r}^{\alpha_{r}}, 2 \leq \alpha_{i} \leq a_{i} ; i=1,2, . . r$.
Proof. Using the procedure choose two adjacent vertices whose degree sum is minimum are of the form, $p_{i}^{a_{i}}, a_{i}>1$ and $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{r}^{a_{r}}$ where $\left(a_{i}=1\right) 1 \leq a_{j} \leq \alpha_{j},(j \neq i) ; j=$ $1,2, i-1, i+1, \ldots r$. Applying step 3 of the procedure, we get the vertex cut S consist of $N\left(p_{i}^{a_{i}}\right), a_{i}>1$ and $N\left(p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{r}^{a_{r}}\right), a_{i}=1$. Clearly the graph $G-S$ contains $n+m$ isolated vertices where $n=\left|S_{1}\right|$ the number of vertices having degree r in G and $m=\left|S_{2}\right|$ the number of
vertices which are of the form $p_{1}^{2} \times p_{2}^{2} \times \ldots \times p_{r}^{2} \leq m \leq$ $p_{1}^{\alpha_{1}} \times p_{2}^{\alpha_{2}} \times \ldots \times p_{r}^{\alpha_{r}}, 2 \leq \alpha_{i} \leq a_{i} ; i=1,2, . . r$. Clearly S is not a hyper vertex cut. But $S_{3}=S \cup S_{1} \cup S_{2}$ is a hyper vertex cut of G having exactly one k_{2} and a connected component having more than two vertices in $G-S_{3}$. Therefore $\kappa_{h c}(G)=\left|S_{3}\right|$.

References

${ }^{\text {[1] }}$ Apostol, T.M., Introduction to Analytic Number Theory, Springer - verlag, Berlin, Heidelberg (1980).
${ }^{[2]}$ Bondy and Murty, Graph Theory with Applications, Macmillan (1976).
[3] Jun-Ming Xu, Min Lu, Meijie Ma, Angelika Hellwig, Super connectivity of line graphs, Information processing letters, 94(2005), 191-195.
${ }^{\text {[4] }}$ Mary Jenitha.L and Sujitha.S, The connectivity number of an arithmetic graph, International Journalof Mathemaical Combinatorics, 1(2018), 132-136.
${ }^{[5]}$ Mary Jenitha.L, Sujitha.S and Uma Devi.B ,The average connectivity of an arithmetic graph, Journal of Computational Information Systems15(1)(2019), 204-207.
${ }^{[6]}$ Rangarajan.R,Akram Alqesmath,Anwar Alwardi, On V_{n} Arithmetic graph, International Journal of Computer Applications, 125(9)(2015), 12-19.
${ }^{[7]}$ Vasumathi. N., and Vangipuram. S., Existence of a graph with a given domination Parameter, Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications, University of Madras, Madras, (1995), 187-195.
[8] Xiaodong liang, Jixiang Meng and Zhaozhang, Super connectivity and Hyper connectivity of vertex transitive Bipartite graph,Graphs and Combinatorics, (2007), 23:39314.
$\star \star \star \star \star \star \star \star \star \star$
ISSN(P):2319-3786
Malaya Journal of Matematik
ISSN(O):2321-5666
$\star \star \star \star \star \star \star \star \star$

